If it's not what You are looking for type in the equation solver your own equation and let us solve it.
73t-5t^2=0
a = -5; b = 73; c = 0;
Δ = b2-4ac
Δ = 732-4·(-5)·0
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-73}{2*-5}=\frac{-146}{-10} =14+3/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+73}{2*-5}=\frac{0}{-10} =0 $
| 5x-13x-9=31 | | 245.76=b-75 | | F(x)=x^2-3x+4,F(-2)= | | 9z+45=180 | | 5x-14x+2=14x | | 80+3x=180 | | 6(-2)-3x=-75 | | x/9=-7=-7 | | 3(x+2)=8-2(x-1) | | 9q+10=20 | | m+14=18+m | | 3a+4a+2a=180 | | 2(x-7)-6=16 | | z/8+4=7 | | k-(-11)=12 | | -3+r=-18 | | −62,500=0.25y | | 8+3x-2=10+4x-10 | | 2x+15-21=47 | | 7w+5=3w+15 | | 4r-7=55 | | F(7)=6x-1/ | | 4(x-1)=12-2(2x-2) | | 32=x²-2² | | 51=y=6=74 | | 77=3u+17 | | 4(6+n=(4*6)+(4*8) | | 7x+5x=144 | | 2^2+2y-24=0 | | 14=-3/8x+20 | | 2+3(4x+4)=62 | | 6²=f²-13 |